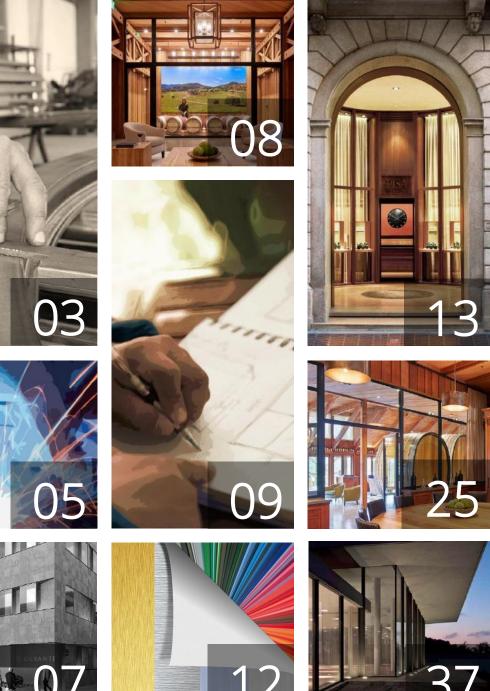

# CONTRACTOR OF THE STATE OF THE



2015 CATALO




& COMEP USA EOLLABORATION



VISIONARY INNOVATORS capturing the world's most

luxurious portrait.













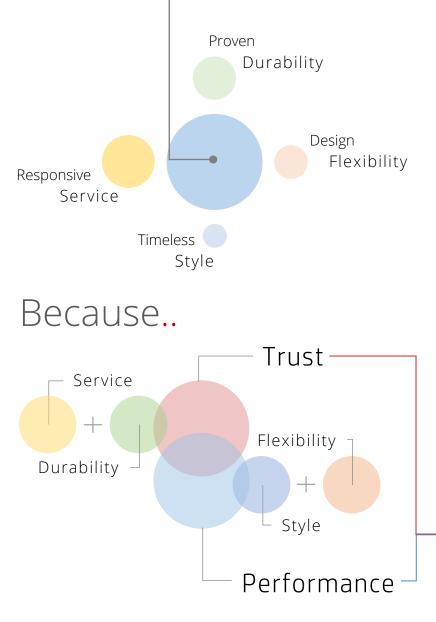


03

13



- Lift and Slide 37
- Curtain Wall 41
- Wall Cladding 45
- Material Data 49
- Product Comparison 51
  - Index 53


- Our Mission
- Cold Rolled Truth 05
  - Certification 07
  - Sustainability ο8
  - Feature Key 09
- Materials & Finishes 12
  - Windows



I



### OUR MISSION Construction Metal Products





"Our success depends on the success of our clients through our products and services."

This is the philosophy CO.ME.P was founded upon and the tradition for excellence through customer reliability has not changed.

It is on our factory floor that traditional and passeddown iron working skills combine with the precision of modern technology and advanced engineering to create iconic works that fulfill the tailored needs of the client. Right down to the last detail, it is our pursuit to create environments that seamlessly integrate technology, craftsmanship and design as well as our commitment to pioneering that continues to set CO.ME.P apart worldwide.

CO.ME.P's dependable *service* and product *durability* instill trust in our clients, while our design *flexibility* and personalized *style* ensures the *performance* for the **results you require**.

→ RESULTS

#### **OURMISSION**



# THE COLD ROLLED TRUTH OF WINDOWS OURSTEEL & DOORS

As you may imagine, the journey to creating a window or a door begins with acquiring the material. To start, large steel lengths are cut from a single coil of cold-rolled steel (*as seen in image 1*) and then inspected for flaws or signs of corrosion prior to cutting, rolling or forming. If flaws are found, new lengths are cut and the rejected lengths are sent back to be recycled.

The steel is now cold-formed, or "rollformed", to obtain its final extruded profile. This not only shapes the steel, but also work-hardens the material and thus increases its strength. During this process the flat steel lengths are continuously formed as they pass through incremental rollers. Image **2** shows the steel being cut to the correct width before passing through the roller machine - as seen in image **3**. The result of these processes is a frame profile as seen in image **4**. Two profile halves are then fused firmly together with a fiberglass strengthened extrusion which is then coated with high density а polyurethane resin, injected, and set extreme under pressure. This signature process forms the Thermally Broken element which significantly reduces the thermal conductivity of the frame and increases its structural durability. For these reasons, we are able to offer the most slender and efficient line of steel windows and doors.



#### Versatility + Reliability

### ....AND THEIR JOURNEY TO SHOWCASE OUR **PASSION &** YOUR **REALITY**.

Now is when the artwork begins to take its true form and beauty. To start, each frame section is inspected prior to undergoing any fabrication. Then the sections are marked for necessary cutting, drilling and tapping prior to being aligned or welded. While in straight lengths, the sections are predrilled and tapped and then sent to be welded. All frame sections, grills and miters are jointed by continuous welding, rather than tack-welding, to ensure the frame remains 100% square and structurally robust. After all welding is completed, each weld is inspected and couture ground such that the final welded surface is indistinguishable from the formed surface and that all curvatures transition flawlessly. Depending on the material and selected finish, the frames are then degreased, washed and treated. For Painted Steel, the frames are hot-dipped galvanized and a high quality polyester powder coat is applied. The frames are then inspected for flaws in the painted finish and retouched if necessary. Hardware, gaskets, operators, locks and hinges are now fitted to the frame and sash and cycle tested for proper operation. If factory glazing is included, the sash is inserted into a custom jig which aligns the frame and maintains 100% squarness during the blocking, setting and caulking processes. This ensures weather tightness and greatly reduces the chance of the sash sagging.



# RELIABILITY THROUGH PROVEN CERTIFICATIONS

Some companies talk the talk but haven't walked the walk – we have! If true reliability is what you are looking for in a product, you must first do you homework to see if that product has been processed through a licensed certification facility for proper testing and approval assessments. Such certifications ensure that products and manufacturing methods comply with required manufacturing and building standards.





The "CE" stamp is a critical certification for products sold and manufactured in the European Union (EU). It is an assessment and confirmation that the manufacturer meets high safety, health, and environmental protection requirements. Although the CE mark is considered to be a self-certification method, it is an important certification because it shows proof of ownership and responsibility for a particular product by its manufacturer. It is common for those who opt not to warranty their product to withhold obtaining or carrying the CE certification.

Where quality products originate is also where quality management is required. ISO 9001:2008 and ISO 9001:2015 are important Standards for two reasons. First, it requires that the company consistently provide a product that meets the outlined needs of the client and meets all statutory and regulatory requirements. Second, it insures that all methods of complying with such requirements are conducted in a manner that is environmentally safe and promotes worker safety and health.





Occasionally, a product marketing claim is not based upon legitimate or certified information. For this reason, NFRC ratings provide a vehicle that ensures the receipt of accurate and reliable information. For this reason, NFRC ratings play a very important role in your window and door decision. The NFRC Certificate provides building inspectors and code officials the ability to endorse products that meet or exceed local energy code requirements. It also ensures that the fenestration schedule and drawings submitted for the simulation and test reports match the original specifications and drawings.

#### OURCERTIFICATIONS

### RECYCLABILITY ENCHNACES OUR SUSTAINABILITY

The preservation of our planets non-renewable resources is a very important facet to the development of our steel products. For this reason, 100% of the steel that is not used during the production process is recycled. This effort by CO.ME.P is consistent with the overall environmental mission statement. Another benefit is that because many of our products are produced from leftover steel, our environmental impact is significantly less than manufacturers utilizing only primary resources.



LOW E COATING AND GASSES MANAGE VISIBLE LIGHT AND HEAT TRANSFER

What many people don't realize is that 30% of the energy consumed for heating or cooling their home is lost through their windows and doors. This means that money is literally flying out the window every second of the day and night. Although a portion of energy lost is due strictly to the size and orientation of the window or door in the home, the biggest factor effecting energy losses is due to the frame, glass and glazing. With this in mind, we integrated a revolutionary *Thermally Broken* element into many of our frames which is the thermal barrier crucial for blocking energy transference through the window and door frame and sash. In addition, we offer the highest quality dual pane insulated glass in numerous E-Low and gas filled variations to meet the efficiency, climate, and budget demands of your project. Setting CO.ME.P apart from competitors, and quickly growing amongst Building Professionals, our *Factory Glazing* option is a perfect solution for ensuring that our clients receive units that are glazed with precision.

As leading producers of the world's most efficient steel window and door systems, CO.ME.P's aim is to provide flexible solutions that justify our client's initial investment with long-term performance.

100% Recyclable Process



SUSTAINABILITYEFFORT

### PRODUCT FEATUREKEY



What if this were you...?

# WELL, YOUR VIEW WOULD



# MATERIALS DEFINE DURABILITY And ONGEVITY



#### MATERIALS



#### DESCRIPTION

Both timely and traditional, our high quality painted, powder coat finish meets the requirements of the most meticulous Designers and Architectural professionals in the business, and is the number one choice for an intricate and decorative space.

#### **ADVANTAGES**

- 10 Year Warranty on finish
- 7 10x stronger than traditional paint
- Low coefficient of thermal expansion •

• Very low maintenance requirements Ideal for historic applications

4.8x less thermally conductive than

- 4.8x less thermally conductive than aluminum
- High resistance to fading

**Custom Patina variations** 

Natural, self healing steel

High corrosion resistance

aluminum

Bronze

Iconic visual appeal revealed through its rich color scheme provides depth and prestige. Utilizing its naturally beautiful patina and custom surface finishes, Bronze is a rustic and stylish solution for creating traditional, historic or modern spaces.



Cor-Ten steel is the perfect combination of style and toughness. With warm color tones similar to bronze and rigidity comparable to stainless steel, this alloy brings the best of both worlds to a rustic, traditional or contemporary space.

Very low maintenance requirements

- Ideal for waterfront applications
- High Ultimate Tensile Strength (UTS)
- Rare, unmatched finish variations
- Natural, self healing steel
- High corrosion resistance

Our Powder Coated (painted) finish is available in hundreds of high quality RAL colors as well as custom colors upon request. In 2015, we became the first European company to ever receive QualiSteelCoat Approvals.

**FINISHES** 



Bronze has 5 standard finishes (Modern, Medium, Dark, Polished, & Antique). We also have the ability to provide custom patinas upon request.



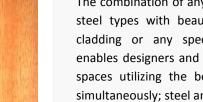
Cor-Ten, like Bronze, has the ability for customized patinas. Tones range from soft, dark brown to a vibrant, red-ish brown.



The finish of Stainless steel varies based on the sanding/polishing method. Therefore, we offer Polished as well as a range between Satin and Scotch Brite

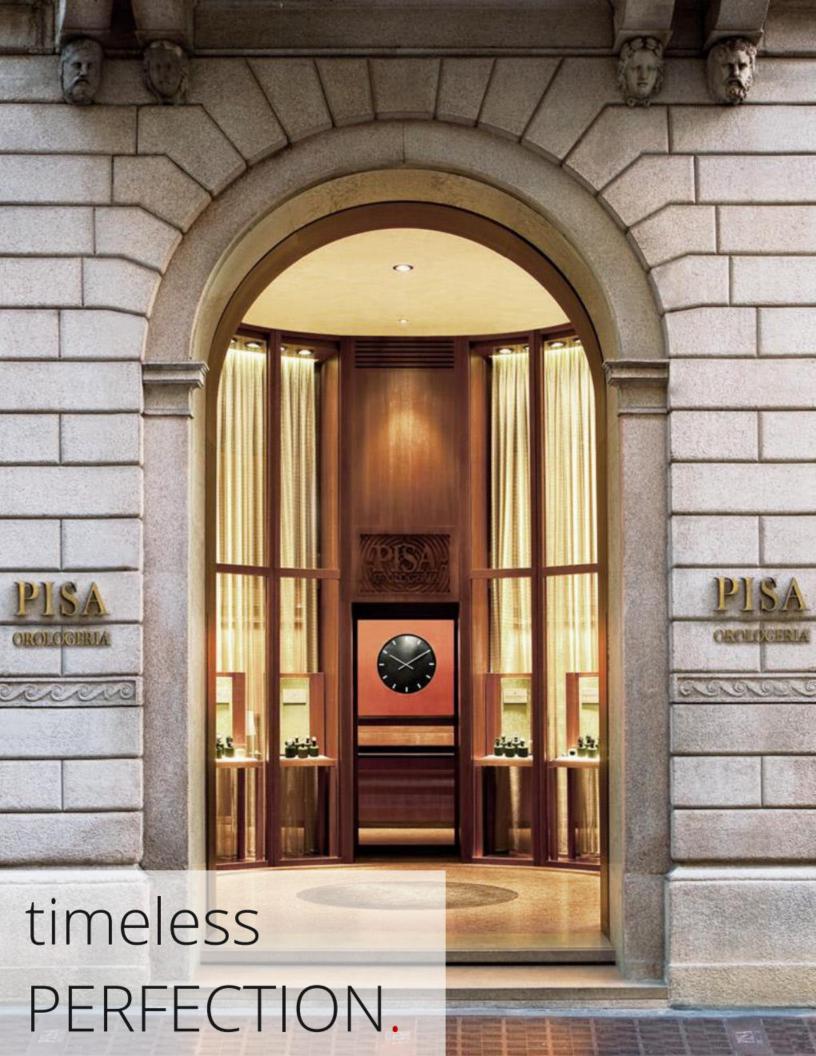


From a dark or light stain to a protective varnish, the finish and wood species is based on our client's preference.



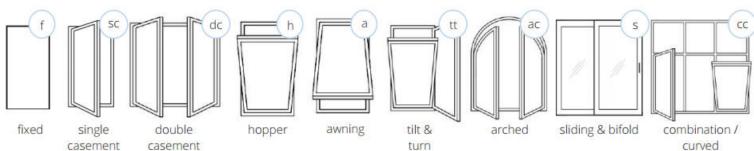

Stainless Steel

Stainless Steel is the top chosen material in modern architecture and design. Not only are it's looks stunning and sleek, but it is the strongest, most wear resistant material available for window and door construction.


- Very low maintenance requirements
- Ideal for waterfront applications
- Extreme durability and toughness
- Custom finishes available
- Highest corrosion resistance
- Available in 304 or 316 marine grade

Wood (Clad)



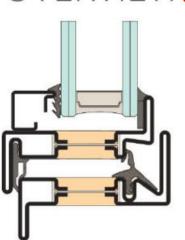

The combination of any of our high quality steel types with beautiful standard pine cladding or any specific wood species enables designers and architects to create spaces utilizing the best of both worlds simultaneously; steel and wood.

- Perfect mix of steel and wood
  - Custom varnishes and stains available
  - High quality pine standard ٠
  - Custom wood species available upon request



# INNOVATION doesn't age...

#### OPERATIONAL STYLE KEY




# ...it EVOLVES.



Rightfully part of the Hall of Fame of the Italian Design, the OS2 frame series is a revolutionary statement in the continued development of efficient steel window and door fenestration. Aesthetically, the 0S2 window series is the perfect choice for replacement of historical "iron windows" from the mid 19th to mid 20<sup>th</sup> century.

### OVERVIEW.



(() 🖓 🗞 🖉 🖉 🖉 (1)) 0















CAM HANDLE





**OPERATIONAL** 

GUIDE

sc















MANY MORE OPTIONS

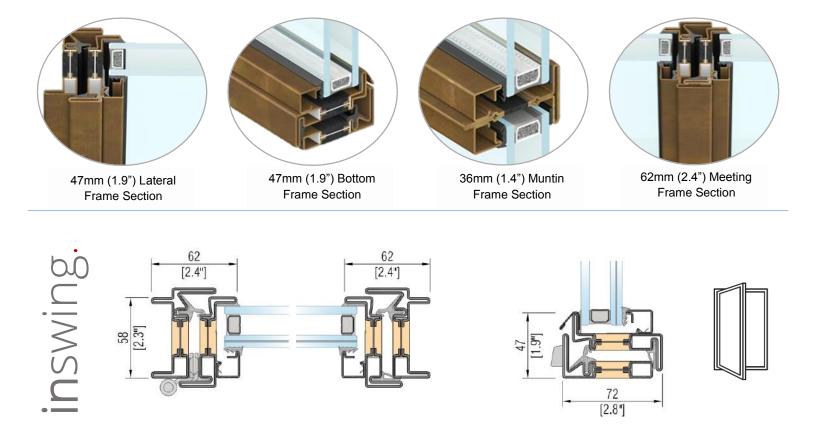


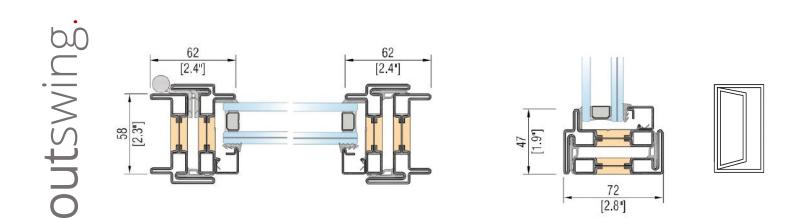






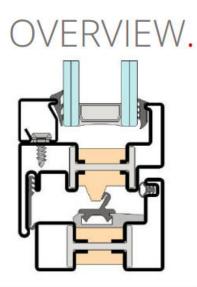



FIXED PULL


SMALL L SQUARE






dc







As a counterpart to the 0S2 frame series, the EBE frame series is the answer to the recently heightened requirements building and technological developments. For this reason, the EBE window series succeeds it competition structurally, acoustically, thermally and through its superior corrosion resistance.



(() 🖓 🗞 🚯 🖉 🕲 )) 0 こ)))











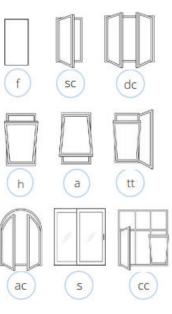






CAM HANDLE

PLANET - Q




MED. L ROUND

MED. L SQUARE















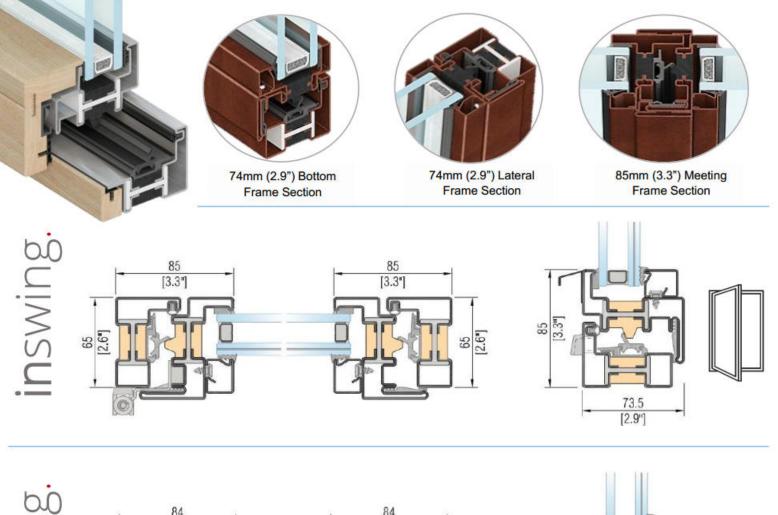


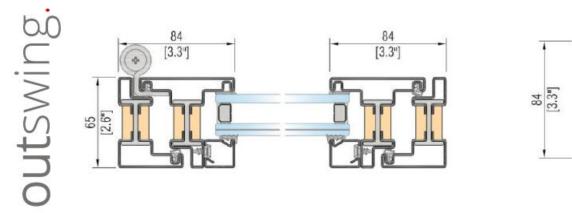


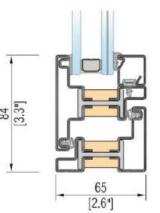


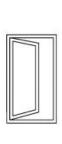






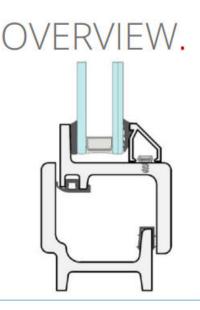











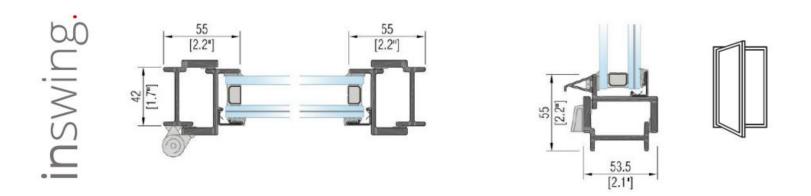


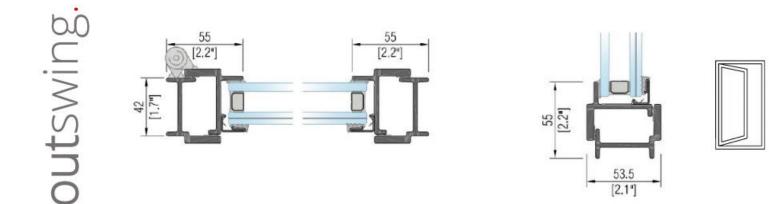


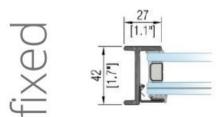

Featuring an **extremely narrow sight-line** of only 27mm (1.1") on a fixed window, the W20 window series is a *hot-rolled steel frame* system which offers a cost effective and astatically magnificent solution for any project where the *character, tradition and durability* of non-thermally broken steel frames are desired.



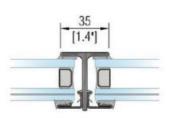
8 (E k & V Q (1)) 0 S B J-SHAPE SQUARE SLOPED L - SHAPE SELF ALINGING **OPERATIONAL** CAM HANDLE GUIDE VELDED TIME - Q SC dc **BOLT-ON (2 WING)** FIXED PULL PLANET - Q а h tt ROTO CRANK ac S CC MANY MORE OPTIONS


Although non-thermally broken, the W20 window series can offer much higher efficiency than older single pane steel windows when glazed with dual pane insulated glass.





NON-PROJECTING

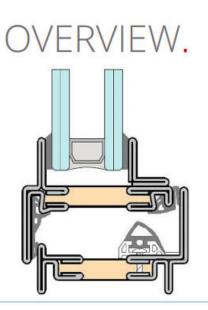

















Released to the public in late 2015, the new HTS frame series is the thermally broken successor to the W20 frame series. It maintains all of the durability and design flexibility characteristics of the W20 series but with greatly enhanced thermal performance. The name "HTS" originates from its root meaning; "Historical Thermal Steel".



())

0

S

L - SHAPE

dc

tt

сс

21

**OPERATIONAL** 

GUIDE

SC

а

S

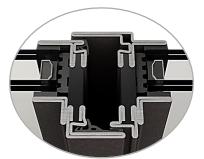
f

h

ac

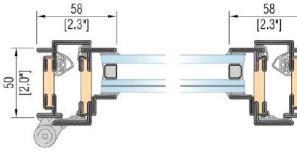
#### THERMAL STEEL windows B GOTHIC GROVED J - SHAPE SQUARE SLOPED THIN CAM HANDLE FIXED PULL NELDED SMALL T SQUARE BOLT-ON (2 WING) ITS WINDOW PLANET - Q SMALL L SQUARE BOLT-ON (3 WING) MANY MORE OPTIONS



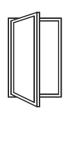

32mm (1.3") Fixed Lateral Frame Section

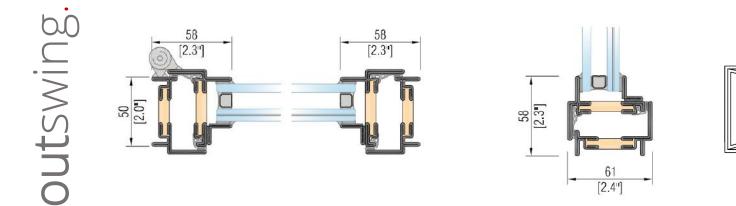


32mm (1.3") Fixed Bottom Frame Section



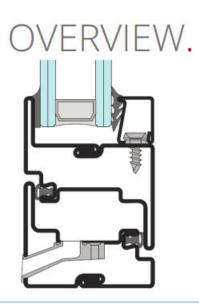

29 - 45mm (1.1" - 1.8") Muntin Frame Section





62mm (2.4") Meeting Frame Section














The AMF series was designed for three key reasons; to (1) create large glass surfaces, to (2) have high sturdiness and durability and (3) performance in line with the latest regulations. It is ideal for recreating industrial charm using minimalistic transom and mullion sections or when a very sleek, modern style is needed.





AMF WINDOW



SLOPED









MANY MORE OPTIONS

GROVED

R

CAM HANDLE

PLANET - Q



GOTHIC







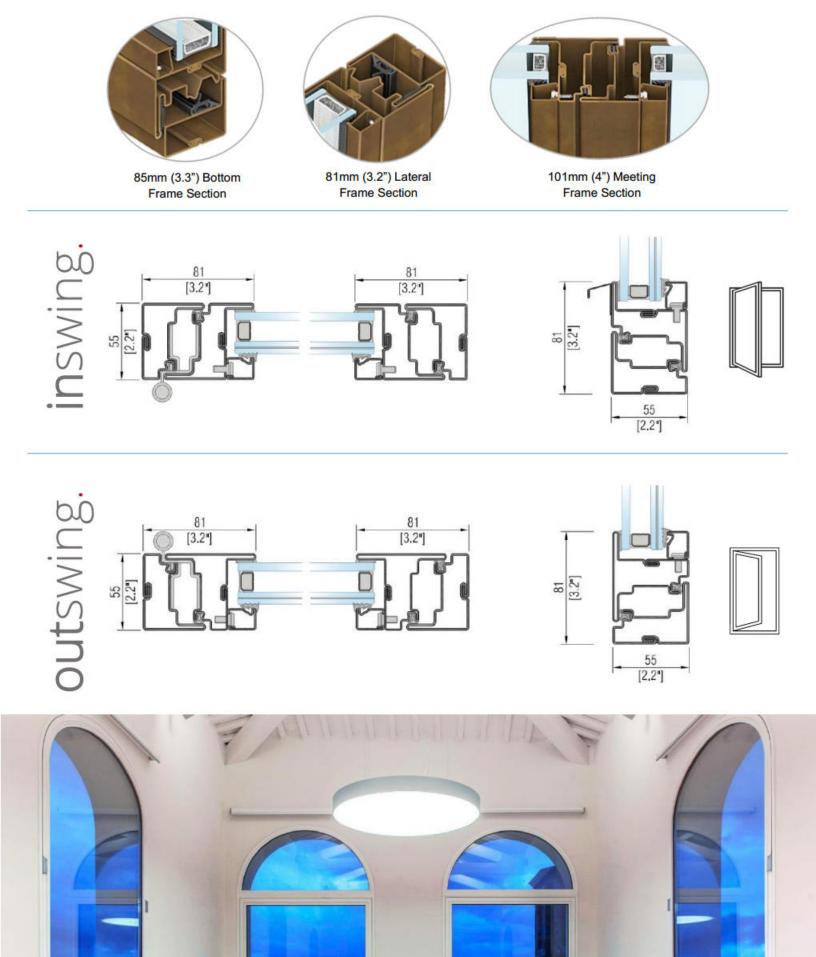
🐵 🗞 CE 🕨 🗞 🙆 🔘 🕼









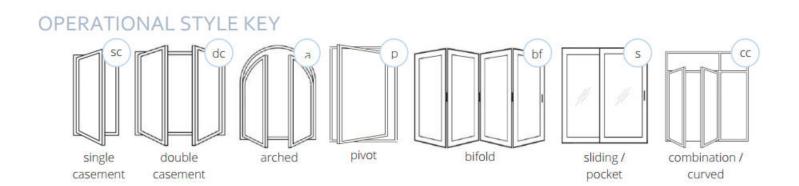

W



OPERATIONAL GUIDE



23




-

24

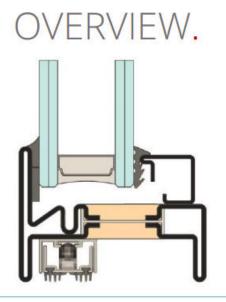
# designing LIFESTYLES.

# ELEGANCE



100

DOORS


## ...really EFFICIENT.





Since many of the same sections can be used to produce the OS2 series windows as well as the doors, the OS2 series doors have been proven to be the most innovative and efficient steel door of its time. Available with *countless hardware and glass options*, the OS2 door series is in a *league of its own*.

(()) 🖓 🔊





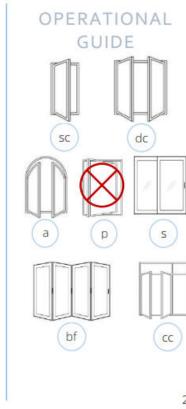






**VITRUVIO. L SQUARE** 

VITRUVIO. L ROUND


VITRUVIO. L SPHERE

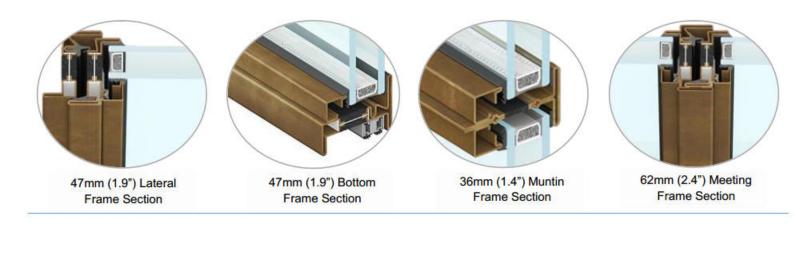
R

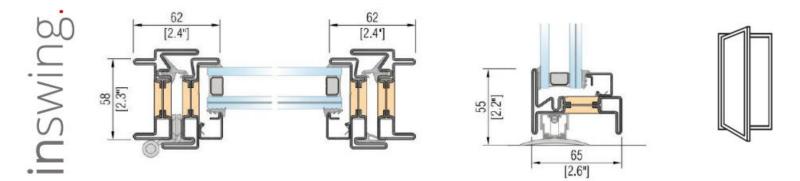


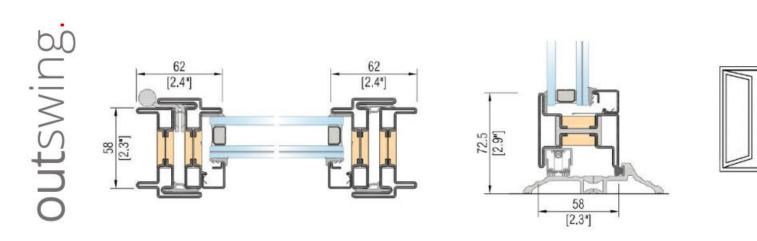
(1))

0





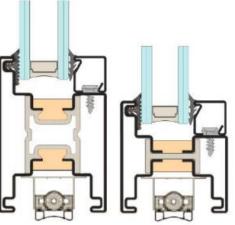





ADAMANT

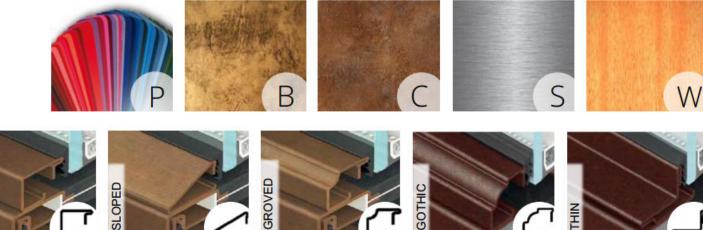


MANY MORE OPTIONS



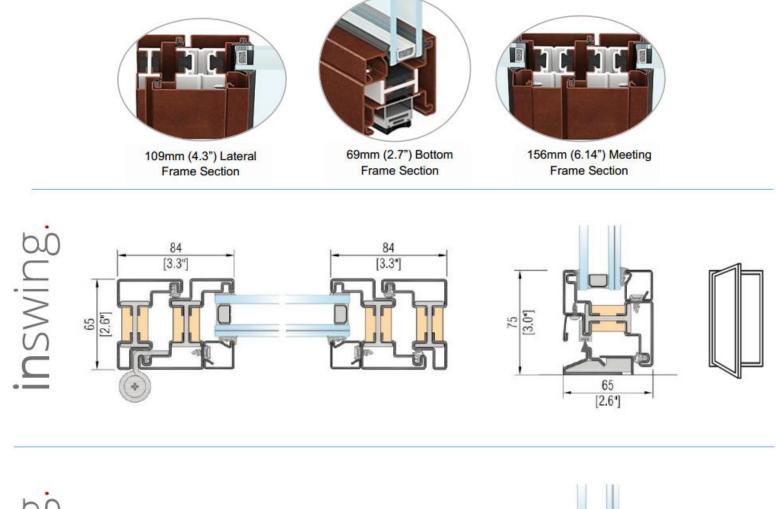


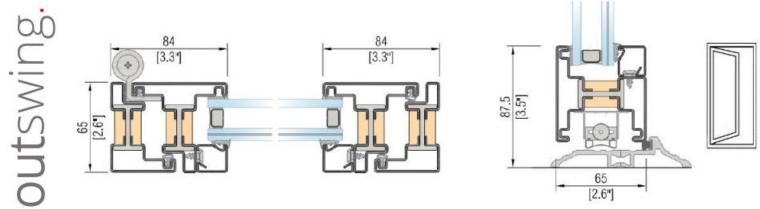



Remember that friend that can just do it all, and is good at everything - consider that the EBE door series! Big or small, bifold or sliding, the EBE series can be utilized for any style of opening while continuing to preform stronger, longer and with higher efficiently than its competition.

OVERVIEW.



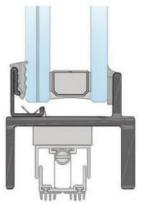


(( ) % 🗛 📐 🔅 



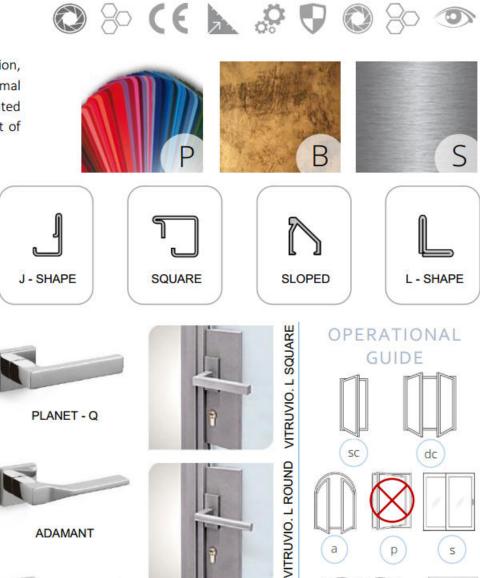
RECTANGULAR









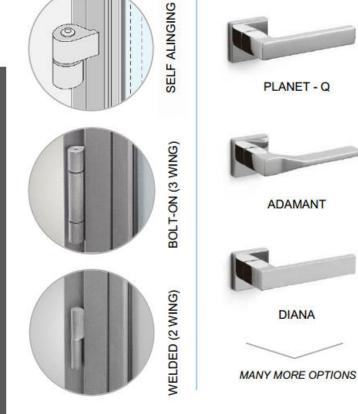

Simply put, the W20 door series has the narrowest sightline of any steel door and is ideal for interior or With exterior use. unmatched factory glazing and a proven gasketing system, the W20 system is sleek, durable and cost effective.





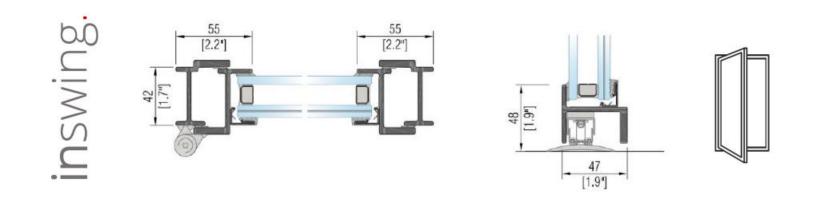
As mentioned in the W20 window series section, although this system is not design with a thermal break, when glazed with dual pane insulated glass, it's thermal qualities out-preform that of many steel doors systems.

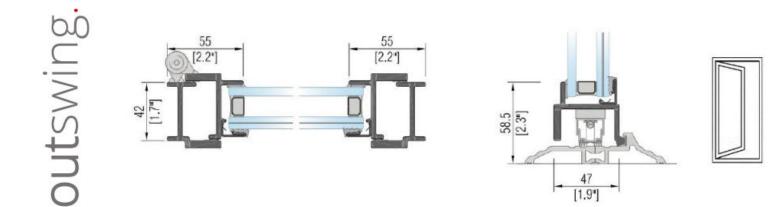



a

bf

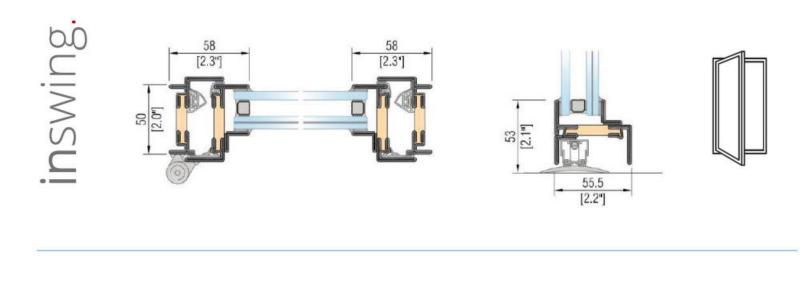
**VITRUVIO. L SPHERE** 

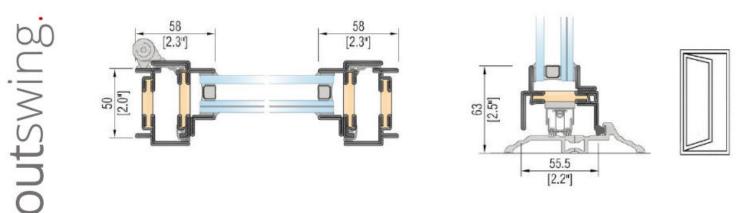

p


# W20 DOOR



S

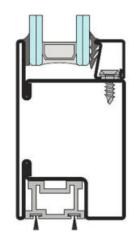

CC














#### OVERVIEW.

The AMF door series answered the call for a non-thermally broken steel door that is bigger and better but narrower than its competition. With the AMF series we can utilize triple pane glass in a larger-than-life lift and slide while maintaining a slender sight-line with extreme durability and rigidity.



🛇 % (E 📐 🔗 🛡 0





**OPERATIONAL** 

GUIDE

p

dc

S

сс

SC

a

bf











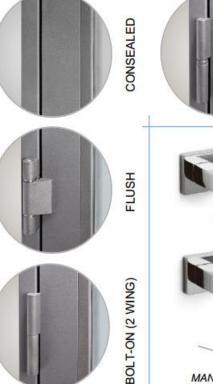




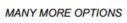













RECTANGULAR



SLOPED



DIANA

PLANET - Q

GROVED

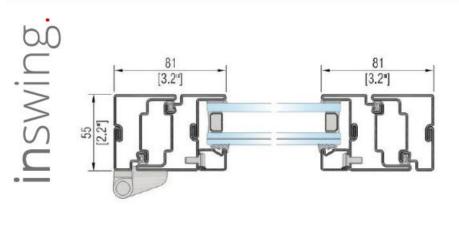
WELDED (2 WING)

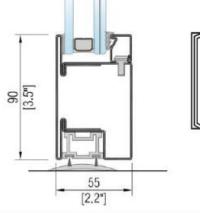




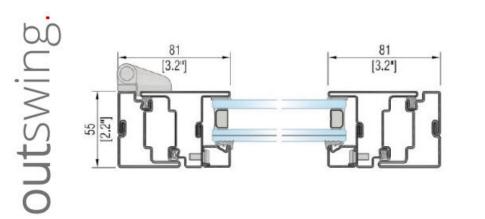
106mm (4.2") Lateral Frame Section

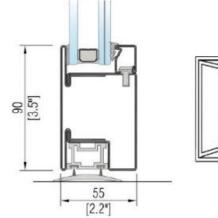



90mm (3.5") Reduced Bottom Frame Section




140mm (5.5") Bottom Frame Section





151mm (5.9") Meeting Frame Section







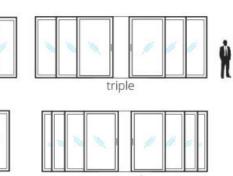




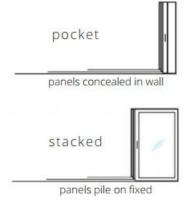


## realize GREATNESS.

# SLIDING ahead of the need...


#### POPULAR CONFIGURATIONS

double

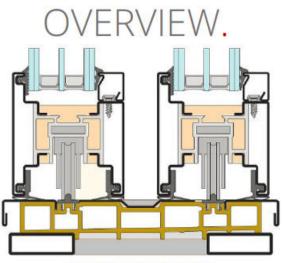





multiple (custom panel setup)



curved




...so you stay on track.



# LIFT & SLIDE

Offered in the aggressive **EBE-85** series as well as the slimmer **EBE-65** series, our lift and slide systems connect the interior of your home with the outdoors like never before. Enjoy full **panoramic vistas**, and all the fresh air you can handle **without compromise**.



Note: EBE 85 section shown above.

(€ 🕑 80 ☆ 📐 🔗 🛡 🔘 🕼 👁













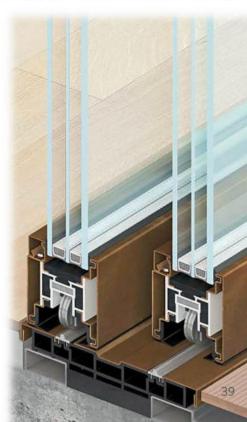
# SLOPED



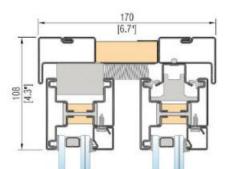


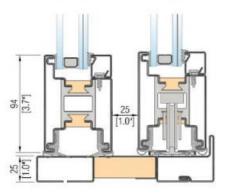


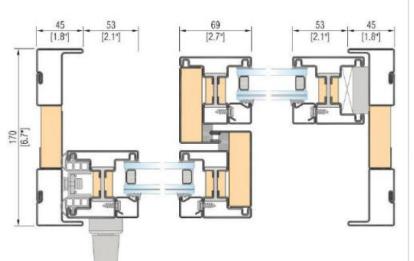
#### BENEFITS.


- Thermally Broken System
- Water drainage integrated into track
- Choose between Flush Mounted Track OR Threshold
- Unlimited customization
- Glazing pocket fits up to 60mm (2.36") glass thickness
- Sightline is symmetric for entire system
- 2X the weather gasket of a standard system




Concealed Wireless Motorization Available



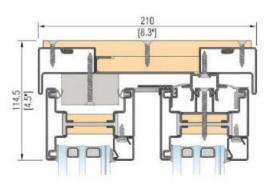



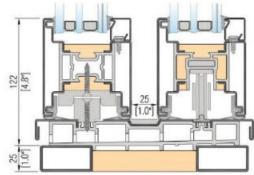


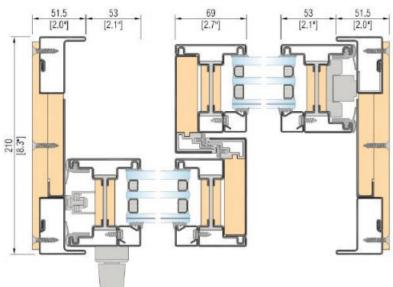

#### EBE<mark>65</mark>









# WIDE-OPEN


311

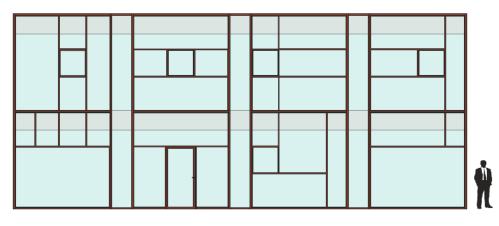
IES

#### EBE<mark>85</mark>









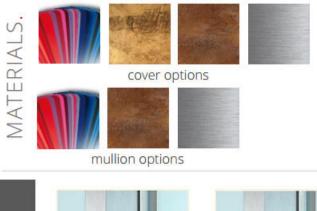

#### EB

# endless VERSATILITY.

### REVERENCE for small details...

#### UNLIMITED INTERGRATION






**CURTAIN WALL** 



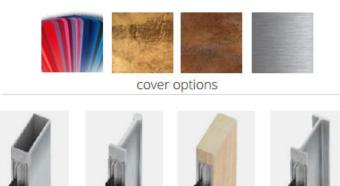


The 4f1 series is the solution for steel curtain walls with extremely narrow sections in line with building regulations and utmost aesthetic style and innovation.





100mm (3.94") mullion


**BENEFITS.** 



50mm (1.97") mullion



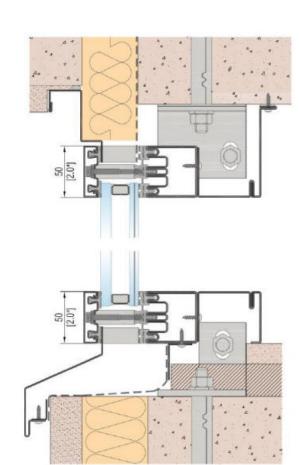
The 4f2 series is the designers dream in that it offers *endless combination and customization opportunities* when paired with the 4f1 series. The ability to **integrate numerous load bearing elements** gives way to massive amounts of creativity.



rectangular custom pipe welded girder

wooden der girder

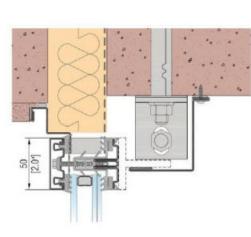
IPE welded beam

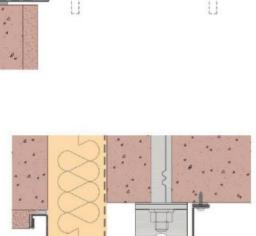

\*4f2 can be fixed to any welded or custom made girder.

- Allows for coordinated integration between all of our window, door and systems
- Tested in the most demanding conditions
- Narrower sight-line & increased durability
- Thermally Broken system
- Superior material and finish options



horizontal section

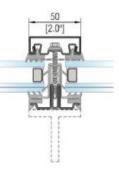

٥,

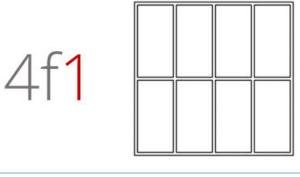





50

horizontal section




50 [2.0"]

C

17





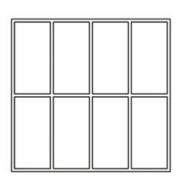
50 [2.0\*]

AAA

N

D

M

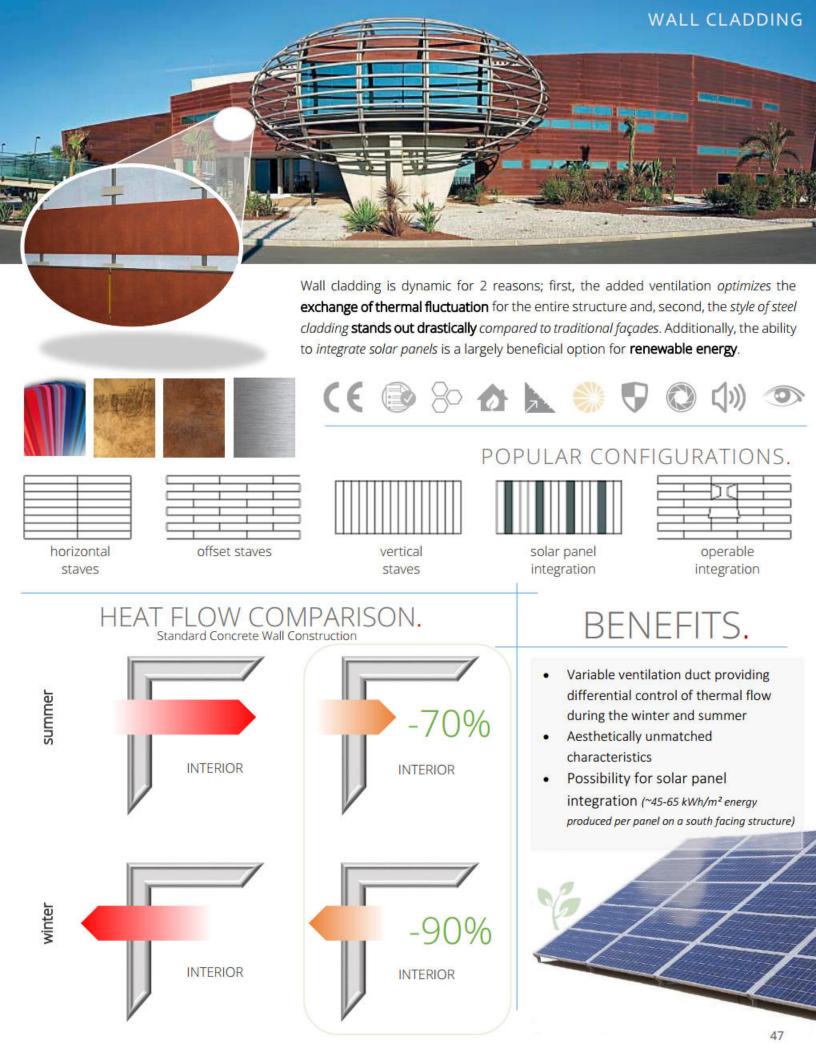

50 [2.0\*]

RAD

L

N

4f2




## proven EXCELLENCE.

THE NEW STANDARD IN

Sustainable & Stylish

WALL CLADDING



#### COUPLING DETAIL. 4 2 4 С Δ 40000 Stave consisting of three parts: (1) Galvanized steel inner panel, (2) A Open-cell Polyurethane inner core and, (3) Cor-ten steel exterior panel B Extruded Polyamide securement clips C Durable and fully adjustable substructure D Load bearing support and alignment bracket

#### INTERIOR APPLICATIONS AVAILABLE

THE STANK

#### Galvanized Steel

| mbol CodeDX 51DS 250 GD+merical Code1.02261.024emical Composition% of Mass99.500%0.270%0.370%0.370%nax0.014%0.009%0.071%0.250%0.016%0.012%0.012%her0.050%ysical Attributesecific Weight (kg/dm²)7.8700ecific Weight (kg/dm²)7.8700efficient of Thermal Expansion (mm/m°C)0.0123dulus of Elasticity (N/mm²)210.0000ectrical Conductivity ( $\Omega$ /mm/m)0.0930ectrical Strength - Yield (N/mm²)500nsile Strength - Vield (N/mm²)500nsile Strength - Ultimate (N/mm²)500expansion at Break (A <sub>80mm</sub> % min)22kers Scale200 - 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOY                                                         | FeP02G                                  | Fe E 250    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|-------------|
| emical Composition% of Mass99.500%0.270%0.370%0.370%nax0.014%0.009%0.071%0.250%0.016%0.12%0.016%ner0.050%ysical Attributesecific Weight (kg/dm²)7.8700ermal Conductivity at 20° C (W/m°K)60.0000efficient of Thermal Expansion (mm/m°C)0.0123udulus of Elasticity (N/mm²)210.0000extrical Conductivity ( $\Omega$ /mm/m)0.0930extract Attributes500extract Attributes20° - 300extract Conductivity ( $\Omega$ /mm/m)22extract Conductivity ( $\Omega$ /mm²)20° - 300nsile Strength - Yield (N/mm²)500ongation at Break ( $A_{80mm}$ % min)22kers Scale200 - 250ference Standards200 - 250IEN 10326:2004 Continuously hot-dip strip and sheet of uctural Steels - Technical Delivery Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mbol Code                                                   | DX 51D                                  | S 250 GD+Z  |
| $\begin{array}{c} 99.500\%\\ 0.270\%\\ 0.370\%\\ 0.370\%\\ 0.370\%\\ 0.009\%\\ 0.009\%\\ 0.009\%\\ 0.071\%\\ 0.250\%\\ 0.016\%\\ 0.250\%\\ 0.016\%\\ 0.012\%\\ 0.012\%\\ 0.012\%\\ 0.050\%\\ \hline \textbf{ysical Attributes}\\ \hline \textbf{ecific Weight (kg/dm²)} & 7.8700\\ ermal Conductivity at 20° C (W/m°K) & 60.0000\\ efficient of Thermal Expansion (mm/m°C) & 0.0123\\ edulus of Elasticity (N/mm²) & 210.0000\\ etrical Conductivity (\Omega/mm/m) & 0.0930\\ \hline \textbf{schanical Attributes}\\ \hline \textbf{strength} - Vield (N/mm²) & 500\\ \hline \textbf{schanical Attributes}\\ \hline \textbf{schanical Attributes}\\ \hline \textbf{strength} - Ultimate (N/mm²) & 500\\ \hline \textbf{schanical Break (A_{80mm}\% min)} & 22\\ \hline \textbf{kers Scale} & 200 - 250\\ \hline \hline \textbf{ference Standards}\\ \hline \textbf{IEN 10326:2004 Continuously hot-dip strip and sheet of uctural Steels - Technical Delivery Conditions\\ \hline \end{array}$ | umerical Code                                               | 1.0226                                  | 1.0242      |
| $\begin{array}{c} 0.270\%\\ 0.370\%\\ 0.370\%\\ 0.370\%\\ 0.009\%\\ 0.009\%\\ 0.009\%\\ 0.071\%\\ 0.250\%\\ 0.016\%\\ 0.012\%\\ 0.012\%\\ 0.050\%\\ \hline \\ \textbf{ysical Attributes}\\ \textbf{ecific Weight (kg/dm²)} & 7.8700\\ \textbf{ermal Conductivity at 20° C (W/m°K)} & 60.0000\\ \textbf{efficient of Thermal Expansion (mm/m°C)} & 0.0123\\ \textbf{rdulus of Elasticity (N/mm²)} & 210.0000\\ \textbf{octrical Conductivity (}\Omega/mm/m)) & 0.0930\\ \hline \\ \textbf{schanical Attributes}\\ \textbf{maile Strength - Yield (N/mm²)} & 500\\ \textbf{nsile Strength - Ultimate (N/mm²)} & 500\\ \textbf{nsile Strength - Ultimate (N/mm²)} & 500\\ \textbf{nsile Strength - Ultimate (N/mm²)} & 500\\ \textbf{schanical Attributes}\\ \hline \\ \textbf{ference Standards}\\ \hline \\ \textbf{IEN 10326:2004 Continuously hot-dip strip and sheet of uctural Steels - Technical Delivery Conditions}\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | emical Composition                                          |                                         | % of Mass   |
| nax       0.370%         nax       0.014%         0.009%       0.071%         0.250%       0.016%         0.250%       0.012%         ner       0.050%         ysical Attributes       60.0000         erificient of Thermal Expansion (mm/m°C)       0.0123         odulus of Elasticity (N/mm²)       210.0000         extrical Conductivity (Ω/mm/m)       0.0930         extrical Strength - Yield (N/mm²)       500         nsile Strength - Vield (N/mm²)       500         nsile Strength - Ultimate (N/mm²)       500         ngation at Break (A <sub>80mm</sub> % min)       22         kers Scale       200 - 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                         | 99.500%     |
| nax       0.014%         0.009%       0.071%         0.250%       0.016%         0.012%       0.012%         her       0.050%         ysical Attributes       60.0000         efficient of Thermal Expansion (mm/m°C)       0.0123         edulus of Elasticity (N/mm²)       210.0000         extrical Conductivity (Ω/mm/m)       0.0930         extrical Strength - Yield (N/mm²)       500         nsile Strength - Ultimate (N/mm²)       500         nogation at Break (A <sub>80mm</sub> % min)       22         kers Scale       200 - 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |                                         | 0.270%      |
| nax       0.014%         0.009%       0.071%         0.250%       0.016%         0.012%       0.012%         her       0.050%         ysical Attributes       60.0000         efficient of Thermal Expansion (mm/m°C)       0.0123         edulus of Elasticity (N/mm²)       210.0000         extrical Conductivity (Ω/mm/m)       0.0930         extrical Strength - Yield (N/mm²)       500         nsile Strength - Ultimate (N/mm²)       500         nogation at Break (A <sub>80mm</sub> % min)       22         kers Scale       200 - 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ı                                                           |                                         | 0.370%      |
| 0.009%         0.071%         0.250%         0.016%         0.012%         her         0.050%         ysical Attributes         ecific Weight (kg/dm²)         ermal Conductivity at 20° C (W/m°K)         60.0000         efficient of Thermal Expansion (mm/m°C)         odulus of Elasticity (N/mm²)         210.0000         extrical Conductivity (Ω/mm/m)         0.0930             (chanical Attributes           nsile Strength - Yield (N/mm²)         220 - 300           nsile Strength - Ultimate (N/mm²)         500           ngation at Break (A <sub>80mm</sub> % min)         22           kers Scale           ference Standards             IEN 10326:2004 Continuously hot-dip strip and sheet of         uctural Steels - Technical Delivery Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | max                                                         |                                         | 0.014%      |
| $\begin{array}{c} 0.071\%\\ 0.250\%\\ 0.016\%\\ 0.012\%\\ 0.012\%\\ 0.050\%\\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                             |                                         |             |
| 0.250%         0.016%         0.012%         0.050%         ysical Attributes         ecific Weight (kg/dm²)       7.8700         ermal Conductivity at 20° C (W/m°K)       60.0000         efficient of Thermal Expansion (mm/m°C)       0.0123         idulus of Elasticity (N/mm²)       210.0000         ectrical Conductivity (Ω/mm/m)       0.0930         ecthanical Attributes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                         |             |
| 0.016%<br>0.012%<br>0.050%ysical Attributesecific Weight (kg/dm²)7.8700ermal Conductivity at 20° C (W/m°K)60.0000efficient of Thermal Expansion (mm/m°C)0.0123dulus of Elasticity (N/mm²)210.0000ectrical Conductivity (Ω/mm/m)0.0930ecthanical Attributes500nsile Strength - Yield (N/mm²)500nsile Strength - Ultimate (N/mm²)500nsgation at Break (A <sub>80mm</sub> % min)22kers Scale200 - 250ference Standards1I EN 10326:2004 Continuously hot-dip strip and sheet of<br>uctural Steels - Technical Delivery Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I                                                           |                                         |             |
| her0.012%<br>0.050%ysical Attributesecific Weight (kg/dm²)7.8700ermal Conductivity at 20° C (W/m°K)60.0000efficient of Thermal Expansion (mm/m°C)0.0123dulus of Elasticity (N/mm²)210.0000ectrical Conductivity (Ω/mm/m)0.0930ectanical Attributes220 - 300nsile Strength - Vield (N/mm²)500nsile Strength - Ultimate (N/mm²)500nsgation at Break (A <sub>80mm</sub> % min)22kers Scale200 - 250ference StandardsIEN 10326:2004 Continuously hot-dip strip and sheet of<br>uctural Steels - Technical Delivery Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                                                           |                                         |             |
| her 0.050%  ysical Attributes ecific Weight (kg/dm²) 7.8700 ermal Conductivity at 20° C (W/m°K) 60.0000 efficient of Thermal Expansion (mm/m°C) 0.0123 edulus of Elasticity (N/mm²) 210.0000 ectrical Conductivity (Ω/mm/m) 0.0930  ectrical Conductivity (Ω/mm/m) 220 - 300 nsile Strength - Yield (N/mm²) 500 nsgation at Break (A <sub>80mm</sub> % min) 22 kers Scale 200 - 250  ference Standards  IEN 10326:2004 Continuously hot-dip strip and sheet of uctural Steels - Technical Delivery Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                         |             |
| ysical Attributes<br>ecific Weight (kg/dm²) 7.8700<br>ermal Conductivity at 20° C (W/m°K) 60.0000<br>efficient of Thermal Expansion (mm/m°C) 0.0123<br>dulus of Elasticity (N/mm²) 210.0000<br>ectrical Conductivity (Ω/mm/m) 0.0930<br>ectrical Conductivity (Ω/mm/m) 220 - 300<br>nsile Strength - Yield (N/mm²) 500<br>nsile Strength - Ultimate (N/mm²) 500<br>ngation at Break (A <sub>80mm</sub> % min) 22<br>kers Scale 200 - 250<br>ference Standards<br>I EN 10326:2004 Continuously hot-dip strip and sheet of<br>uctural Steels - Technical Delivery Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |                                         |             |
| ecific Weight (kg/dm²)7.8700ermal Conductivity at 20° C (W/m°K)60.0000efficient of Thermal Expansion (mm/m°C)0.0123dulus of Elasticity (N/mm²)210.0000ectrical Conductivity (Ω/mm/m)0.0930echanical Attributes0.0930echanical Attributes220 - 300nsile Strength - Yield (N/mm²)500ngation at Break (A <sub>80mm</sub> % min)22kers Scale200 - 250ference StandardsIEN 10326:2004 Continuously hot-dip strip and sheet of uctural Steels - Technical Delivery Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nei                                                         |                                         | 0.050%      |
| ermal Conductivity at 20° C (W/m°K) 60.0000<br>efficient of Thermal Expansion (mm/m°C) 0.0123<br>dulus of Elasticity (N/mm²) 210.0000<br>ectrical Conductivity (Ω/mm/m) 0.0930<br>ectrical Attributes<br>nsile Strength - Yield (N/mm²) 220 - 300<br>nsile Strength - Ultimate (N/mm²) 500<br>engation at Break (A <sub>80mm</sub> % min) 22<br>kers Scale 200 - 250<br>ference Standards<br>I EN 10326:2004 Continuously hot-dip strip and sheet of<br>uctural Steels - Technical Delivery Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nysical Attributes                                          |                                         | 7.0700      |
| efficient of Thermal Expansion (mm/m°C) 0.0123<br>dulus of Elasticity (N/mm²) 210.0000<br>ectrical Conductivity (Ω/mm/m) 0.0930<br>chanical Attributes<br>msile Strength – Yield (N/mm²) 220 - 300<br>nsile Strength – Ultimate (N/mm²) 500<br>engation at Break (A <sub>80mm</sub> % min) 22<br>kers Scale 200 - 250<br>ference Standards<br>I EN 10326:2004 Continuously hot-dip strip and sheet of<br>uctural Steels – Technical Delivery Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             | - ()                                    |             |
| Adulus of Elasticity (N/mm²)       210.0000         Actrical Conductivity (Ω/mm/m)       0.0930         Achanical Attributes       10000         Isile Strength - Yield (N/mm²)       220 - 300         Isile Strength - Ultimate (N/mm²)       500         Achanical Attributes       220 - 300         Isile Strength - Ultimate (N/mm²)       200 - 250         Achanical Strength - Ultimate (N/mm²)       200 - 250         Achanical Strength - Ultimate (N/mn²)       200 - 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                           |                                         |             |
| ectrical Conductivity (Ω/mm/m) 0.0930<br>Chanical Attributes<br>Insile Strength - Yield (N/mm²) 220 - 300<br>Insile Strength - Ultimate (N/mm²) 500<br>Strength - Ultimate (N/mm²) 22<br>kers Scale 200 - 250<br>Ference Standards<br>I EN 10326:2004 Continuously hot-dip strip and sheet of<br>uctural Steels - Technical Delivery Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                         |             |
| Achanical Attributes         nsile Strength - Yield (N/mm²)       220 - 300         nsile Strength - Ultimate (N/mm²)       500         ongation at Break (A <sub>80mm</sub> % min)       22         kers Scale       200 - 250         ference Standards       IEN 10326:2004 Continuously hot-dip strip and sheet of uctural Steels - Technical Delivery Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                           |                                         | 210.0000    |
| nsile Strength - Yield (N/mm²) 220 - 300<br>nsile Strength - Ultimate (N/mm²) 500<br>ongation at Break (A <sub>80mm</sub> % min) 22<br>kers Scale 200 - 250<br>ference Standards<br>I EN 10326:2004 Continuously hot-dip strip and sheet of<br>uctural Steels - Technical Delivery Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ectrical Conductivity (Ω/mn                                 | n/m)                                    | 0.0930      |
| IEN 10326:2004 Continuously hot-dip strip and sheet of uctural Steels - Technical Delivery Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ensile Strength - Ultimate(                                 | (N/mm²)                                 | 500<br>22   |
| eet of low carbon steels for cold forming - Technical Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ructural Steels - Technical De<br>NI EN 10327:2004: 2004 Co | elivery Conditions<br>ntinuously hot-di | p strip and |

| AISI acronym<br>DIN acronym<br>Chemical Composition                               | 304<br>1.4301 |              |  |  |  |  |  |
|-----------------------------------------------------------------------------------|---------------|--------------|--|--|--|--|--|
|                                                                                   | 1.4301        | 1.4404       |  |  |  |  |  |
| Chemical Composition                                                              |               |              |  |  |  |  |  |
|                                                                                   | % of          | % of Mass    |  |  |  |  |  |
| C                                                                                 | ≤ 0.070%      | ≤ 0.030%     |  |  |  |  |  |
| SI                                                                                | ≤ 1.000%      | ≤ 1.000%     |  |  |  |  |  |
| Mn                                                                                | ≤ 2.000%      | ≤ 2.000%     |  |  |  |  |  |
| P max                                                                             | ≤ 0.045%      | ≤ 0.045%     |  |  |  |  |  |
| S                                                                                 | ≤ 0.030%      | ≤ 0.030%     |  |  |  |  |  |
| Ni                                                                                | ≤ 0.110%      | ≤ 0.110%     |  |  |  |  |  |
| Cr                                                                                | 17.5 - 19.5%  | 16.5 - 18.5% |  |  |  |  |  |
| Мо                                                                                | -             | 2.0 - 2.50%  |  |  |  |  |  |
| Ni                                                                                | 8.0 - 10.5%   | 10.0 - 13.0% |  |  |  |  |  |
| Other                                                                             | -             | -            |  |  |  |  |  |
| Physical Attributes                                                               |               |              |  |  |  |  |  |
| Specific Weight (kg/dm²)                                                          | 7.9100        | 8.0000       |  |  |  |  |  |
| Thermal Conductivity at 20º C (W/mºK)                                             | 17.0000       | 17.0000      |  |  |  |  |  |
| Coefficient of Thermal Expansion (mm/m°C)                                         | 0.0103        | 0.0103       |  |  |  |  |  |
| Modulus of Elasticity (N/mm²)                                                     | 196.0000      | 196.0000     |  |  |  |  |  |
| Electric Conductivity (Ω/mm/m)                                                    | 0.7140        | 0.7140       |  |  |  |  |  |
| Melting Point (°C)                                                                | 1400 - 1420   | 1400 - 1420  |  |  |  |  |  |
| Mechanical Attributes                                                             |               |              |  |  |  |  |  |
| Tensile Strength - Yield (N/mm²)                                                  | 290 - 310     | 280 - 305    |  |  |  |  |  |
| Tensile Strength - Ultimate (N/mm²)                                               | 540 - 750     | 530 - 680    |  |  |  |  |  |
| Proportionality Stress Limit (0.2% Rp <sub>0.2</sub> )                            | 230           | 240          |  |  |  |  |  |
| (1.0% Rp <sub>1.0</sub> )                                                         | 260           | 270          |  |  |  |  |  |
| Elongation at Break (A <sub>80mm</sub> % min)                                     | 500           | 500          |  |  |  |  |  |
| Brinnel Scale (kg / mm²)                                                          | < 165         | < 170        |  |  |  |  |  |
| Reference Standards                                                               |               |              |  |  |  |  |  |
| EN 10088 - (1) Stainless Steel - List of Stainles                                 | s Steels      |              |  |  |  |  |  |
| EN 10088 - (2) Stainless Steel - Material Stand                                   |               |              |  |  |  |  |  |
| Steel sheet, plate, and strip for general purpose                                 |               |              |  |  |  |  |  |
| EN 10088 - (1) Stainless Steel - Material Standard for Stainless                  |               |              |  |  |  |  |  |
| Steel semi-finished products, bars, rods, and sections for                        |               |              |  |  |  |  |  |
| general purposes <b>EN 144</b> - Determination of the resistance to corrosion for |               |              |  |  |  |  |  |
| EN 144- Determination of the resistance to corr<br>austenitic Stainless Steel     | I USION TOP   |              |  |  |  |  |  |
| מעזנפו וונור סנמון ונפזא סנפפו                                                    |               |              |  |  |  |  |  |



\* UNI 10088-2: 1997

#### Cor-Ten Steel

| ALLOY                     | Cor-Ten "A" |
|---------------------------|-------------|
| EN 10027 - 1 / ECISS IC10 | S355JOWP    |

| Chemical Composition | % of Mass    |
|----------------------|--------------|
| C max                | 0.120%       |
| SI max               | 0.750%       |
| Mn max               | 1.000%       |
| Р                    | 0.6 - 0.15%  |
| S max                | 0.040%       |
| Ni max               | 0.650%       |
| Cr                   | 0.30 - 1.25% |
| Cu                   | 0.25 - 0.55% |
| Other                | -            |

#### **Physical Attributes**

| Specific Weight (kg/dm²)                  | 7.8700   |
|-------------------------------------------|----------|
| Thermal Conductivity at 20º C (W/mºK)     | 60.0000  |
| Coefficient of Thermal Expansion (mm/m°C) | 0.0108   |
| Modulus of Elasticity (N/mm²)             | 210.0000 |
| Electrical Conductivity (Ω/mm/m)          | 0.0934   |

#### **Mechanical Attributes**

| Mechanical Attributes                          |                     |
|------------------------------------------------|---------------------|
| Tensile Strength - Yield (N/mm²)               | 355                 |
| Tensile Strength - Ultimate (N/mm <sup>2</sup> | 2) 510 - 680        |
| Elongation at Break (A <sub>80mm</sub> % min)  | < 1.5 ≤ 2.0 14 - 16 |
|                                                | < 2.0 ≤ 2.!15 - 17  |
|                                                | < 2.5 ≤ 3.(16 - 18  |
|                                                |                     |

#### Reference Standards

**UNI EN 10131 –** Cold-Rolled, uncoated and zinc (or zinc-nickel electronically coated low carbon) and high yield strength steel flat products for cold forming – tolerances on dimensions and shape

#### Bronze

| Type (Cold Rolled Laminate)<br>Alloy Code | 10-H10                  |
|-------------------------------------------|-------------------------|
| MION ( odo                                |                         |
| -                                         | CW 506L                 |
| Designation                               | R350 / H095             |
| Chemical Composition                      | % of Mass               |
| Cu                                        | 66 - 68%                |
| Pb max                                    | 0.200%                  |
| Fe max                                    | 0.150%                  |
| Al max                                    | 0.050%                  |
| Sn max                                    | 0.200%                  |
| Si max                                    | 0.150%                  |
| Mn max                                    | 0.100%                  |
| Ni max                                    | 0.300%                  |
| Impurities                                | 0.400%                  |
| Zn                                        | remainder               |
| Physical Attributes                       |                         |
| Specific Weight (kg/dm²)                  | 8.5000                  |
| Specific Heat Capacity at 20º C (cal/g)   | 0.0900                  |
| Thermal Conductivity at 20º C (W/mºK)     | 0.2780                  |
| Linear Thermal Expansion Coefficient      | 20.2 x 10 <sup>-6</sup> |
| (20 to 300°C)                             | 20.2 X 10               |
| Electrical Resistivity at 20º C (μΩ cm)   | 6.6300                  |
| Modulus of Elasticity (N/mm²)             | 110.0000                |
| Melting Point (°C)                        | 905 - 940               |
| Structured Phase                          | Alpha                   |
| Mechanical Attributes*                    |                         |
| Tensile Strength - Yield (N/mm²)          | 200 - 360               |
| Tensile Strength - Ultimate (N/mm²)       | 350 - 430               |
| Elongation (min %)                        | 23                      |
| Brinnel Scale (kg / mm²)                  | 95 - 125                |

**UNI EN 1652 -** Copper and copper alloys - Plate, sheet, strip and circles for general purposes





\* UNI 4894:1962

#### FRAME COMPARISON

| RAI          | ME COMPARISON<br>CHART                                                                                                                                                   |         | , MEN    | 20151        |          |                  | 2           | ۍ<br>کې     | 60      | cile Rat | edlaren | 20151 NEW 2           |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|--------------|----------|------------------|-------------|-------------|---------|----------|---------|-----------------------|
|              | Thermally Broken                                                                                                                                                         | <br>    | ° 0<br>• | 2 N          | V P      | N <sup>t</sup> N | ۍ<br>در     | •           | SE At   | •        | •       | <del>کی کر</del><br>• |
| MATERIALS    | Galvanized Steel with a Powder Coated Finish<br>Stainless Steel (AISI 304 / AISI 316L)<br>Cor-Ten<br>Bronze                                                              | •       | •        | •            | •        | •                | •           | •           | •       | •        | •       | •                     |
| LAM          | Bi - Metal (Comination of any 2 Metal Types)<br>Wood + Metal (Painted / SS / Cor-Ten / Bronze)                                                                           | •       | •        | -            | •        | •                | •           | •           | ٠       | •        | •       | -                     |
| STYLE        | Flush Window<br>Flush Door<br>Rebated Window                                                                                                                             | ٠       | •        | ٠            | •        | •                | •           | •           | ٠       |          |         |                       |
| ARE          | Rebated Door<br>Custom Hardware Options                                                                                                                                  | •       | •        | •            | •        | •                | •           | •           | •       |          | -       |                       |
| HARDWARE     | Concealed Hinges<br>Concealed Closers<br>Threshold Options                                                                                                               | ٠       | •        | ٠            | •        | •                | •           | •           | •       |          |         |                       |
| SEAL         | Dual Neoprene Weather Seal + Weep<br>Triple Neoprene Weather Seal + Weep                                                                                                 | ٠       | ٠        | ٠            | •        | ٠                | •           | •           | ٠       | •        | •       |                       |
| GLAZING      | Single Pane / Monolithic Glass*<br>Dual Pane Insulated Glass*<br>Triple Pane Insulated Glass*<br>Simulated Divided Option<br>True Divided Option<br>Putty Glazing Option | •       | •        | •            | •        | •                | •           | •           | •       | •        | •       |                       |
|              | <i>Factory Glazing Option</i><br>Maximum Overall Glass Thickness (mm)                                                                                                    | •<br>40 | •<br>40  | •<br>24      | •<br>40  | •<br>60          | •<br>48     | •<br>68     | •<br>40 | •<br>56  | •<br>50 |                       |
| MUNTIN       | Flush Exterior Joint<br>Fentra Exterior Joint                                                                                                                            | ٠       | ٠        | •            | •        | ٠                | ٠           | •           | ٠       | •        | ٠       |                       |
| PERFORMANCE  | Narrow Sight-line<br>Thermal Efficiency**<br>Wind Resistance<br>Water Tightness<br>Air Permeability                                                                      | •••     | •••      | •            | •        | •                | •           | •           | •       | •••      | •••     | • • • •               |
| PERI         | Break-in Resistance***<br>Sound Insulation*                                                                                                                              | ••      | ••       | •            | •••      | ••••             | •••         | ••••        | ••••    | •••      | •••     | ••••                  |
| DES          | Fixed<br>Single & Double Casement<br>Single Hung & Double Hung<br>Tilt and Turn                                                                                          | •       | •        | е<br>С О М I | •<br>N G | SOON             |             | •           |         | •        | •       |                       |
| WINDOW TYPES | Pivot (horizontal & vertical)<br>Sliding<br>Bifold                                                                                                                       | •       | •        | •            | •        | •                | •<br>•<br>• | •<br>•<br>• |         |          |         |                       |
| 3            | Awning / Hopper<br>Arched<br>Combination / Curved / Corner                                                                                                               | •       | •        | •            | •        | •                | •           | •           |         |          |         |                       |
| PES          | Single & Double Casement<br>Pivot (horizontal & vertical)<br>Sliding (top loaded)                                                                                        | •       | •        | •            | •        | •                | •           | •           | •       |          |         |                       |
| DOOR TYPES   | Sliding (bottom loaded)<br>Bifold<br>Arched                                                                                                                              | •       | •        | •            | •        | •                | •           | •           |         |          |         |                       |
|              | Combination / Curved                                                                                                                                                     | ۰       | •        | ٠            | ٠        | ٠                | ٠           | ٠           |         |          |         |                       |

Performance is ranked on a dot (• ) scale. More dots equals better performance. \*\*\* Depends on locking mechanism/hardware

\*\* Glass type can effect these results signifigantly

Depends on glass thickness

NOTES

#### notes.



#### INDEX.

| Contents    |              | <br>02 |
|-------------|--------------|--------|
| Our Missi   | on           | <br>03 |
| The Cold    | Rolled Truth | <br>05 |
| Certificati | on           | <br>07 |
| Sustainab   | oility       | <br>08 |
| Feature K   | ley          | <br>09 |
| Materials   | & Finishes   | <br>12 |
| Windows     |              | <br>13 |
|             | OS2 Series   | <br>15 |
|             | EBE Series   | <br>17 |
|             | W20 Series   | <br>19 |
|             | HTS Series   | <br>21 |
|             | AMF Series   | <br>23 |
| Doors       |              | <br>25 |
|             | OS2 Series   | <br>27 |

| EBE Series         | <br>29 |
|--------------------|--------|
| W20 Series         | <br>31 |
| HTS Series         | <br>33 |
| AMF Series         | <br>35 |
| Lift and Slide     | <br>37 |
| Curtain Wall       | <br>41 |
| Wall Cladding      | <br>45 |
| Material Data      | <br>49 |
| Painted Steel      | <br>49 |
| Stainless Steel    | <br>49 |
| Cor-Ten Steel      | <br>50 |
| Bronze             | <br>50 |
| Product Comparison | <br>51 |
| Notes              | <br>52 |
| Index              | <br>53 |

COMEP USA is the owner and authorized user of all trademarks used in this publication unless otherwise specified.

\*Colors shown in this catalog should be used only as a guide.

\*Elevations and section details contained in this publication are not projected to scale and should not be used in direct comparison with each other.

\*Measurements throughout the product portfolio are nominal.

\*Only basic hardware and glazing bead options are mentioned for each product. For complete hardware availability please consult with a representative.

\*Due to the treatment process, bronze frames (in contrast to steel) will show visible intersections at miters. Fully welded miters are standard only for steel.

\*The contents (text, images, and formats) should not be copied, used or sold in any way shape or form without written approval by COMEP USA.



#### Connecticut

+1(860.339.5922) comepusa.sales@gmail.com

#### COMEP INFISSI COMEP USA

#### Quarrata PT

#### +39(0573.73.54.22)

info@comepinfissi.com www.comepsteelwindows.com